High-performance ZnO nanowire transistors with aluminum top-gate electrodes and naturally formed hybrid self-assembled monolayer/AlO(x) gate dielectric.

نویسندگان

  • Daniel Kälblein
  • Hyeyeon Ryu
  • Frederik Ante
  • Bernhard Fenk
  • Kersten Hahn
  • Klaus Kern
  • Hagen Klauk
چکیده

A method for the formation of a low-temperature hybrid gate dielectric for high-performance, top-gate ZnO nanowire transistors is reported. The hybrid gate dielectric consists of a self-assembled monolayer (SAM) and an aluminum oxide layer. The thin aluminum oxide layer forms naturally and spontaneously when the aluminum gate electrode is deposited by thermal evaporation onto the SAM-covered ZnO nanowire, and its formation is facilitated by the poor surface wetting of the aluminum on the hydrophobic SAM. The hybrid gate dielectric shows excellent electrical insulation and can sustain voltages up to 6 V. ZnO nanowire transistors utilizing the hybrid gate dielectric feature a large transconductance of 50 μS and large on-state currents of up to 200 μA at gate-source voltages of 3 V. The large on-state current is sufficient to drive organic light-emitting diodes with an active area of 6.7 mm(2) to a brightness of 445 cd/m(2). Inverters based on ZnO nanowire transistors and thin-film carbon load resistors operate with frequencies up to 30 MHz.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Top-gate ZnO nanowire transistors and integrated circuits with ultrathin self-assembled monolayer gate dielectric.

A novel approach for the fabrication of transistors and circuits based on individual single-crystalline ZnO nanowires synthesized by a low-temperature hydrothermal method is reported. The gate dielectric of these transistors is a self-assembled monolayer that has a thickness of 2 nm and efficiently isolates the ZnO nanowire from the top-gate electrodes. Inverters fabricated on a single ZnO nano...

متن کامل

Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers

Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital...

متن کامل

High performance ZnO nanowire field effect transistors with organic gate nanodielectrics: effects of metal contacts and ozone treatment

High performance ZnO nanowire field effect transistors (NW-FETs) were fabricated using a nanoscopic self-assembled organic gate insulator and characterized in terms of conventional device performance metrics. To optimize device performance and understand the effects of interface properties, devices were fabricated with both Al and Au/Ti source/drain contacts, and device electrical properties we...

متن کامل

Microcontact-printed self-assembled monolayers as ultrathin gate dielectrics in organic thin-film transistors and complementary circuits.

We have developed a manufacturing process for organic thin-film transistors and organic complementary circuits in which a microcontact-printed phosphonic acid self-assembled monolayer is employed first as an etch resist to pattern aluminum gate electrodes by wet etching and then as the gate dielectric of the same device. To our knowledge, this is the first report of a printing process for elect...

متن کامل

Solution processable multi-channel ZnO nanowire field-effect transistors with organic gate dielectric.

The present work focuses on nanowire (NW) applications as semiconducting elements in solution processable field-effect transistors (FETs) targeting large-area low-cost electronics. We address one of the main challenges related to NW deposition and alignment by using dielectrophoresis (DEP) to select multiple ZnO nanowires with the correct length, and to attract, orientate and position them in p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 2014